Distributed Systems — CS425/CSE424/ECE428 — Fall 2011

Failure Detection

2011-08-25 Nikita Borisov — UIUC

Key Properties

Multiple computers
Concurrent execution
Independent failures
Autonomous administrators
Heterogeneous capacities, properties

Large numbers (scalability)
Networked communication

Asynchronous execution
Unreliable delivery

Insecure medium
Common goal

Consistency — can discuss whole-system properties
Transparency — can use the system without knowing details

2011-08-25 Nikita Borisov — UIUC 2

Objectives

How do we detect failures?
Models

Failures

Networks
Properties

Guarantees

Metrics
Techniques

2011-08-25 Nikita Borisov — UIUC 3

Faillure Model

What is a failure?
Process omission failure

Crash-stop (fail-stop) —a process halts and does
not execute any further operations

Crash-recovery — a process halts, but then
recovers (reboots) after a while

We will focus on Crash-stop failures
They are easy to detect in synchronous systems
Not so easy in asynchronous systems

Two Different System Models

Synchronous Distributed System
Each message is received (successfully) within bounded time
Each step in a process takes |b < time < ub
(Each local clock’s drift has a known bound)
Asynchronous Distributed System
No bounds on message transmission delays
No bounds on process execution

(The drift of a clock is arbitrary)
Which is more realistic?

Synchronous: Multiprocessor systems

Asynchronous: Internet, wireless networks, datacenters, most
real systems

What's a failure detector?

What's a failure detector?

Crash-stop failure
(p; 1s a failed process)

P;

What's a failure detector?

needs to know about pj’ s failure
(p; 1s a non-faulty process

: Crash-stop failure
or alive process)

(p; 1s a failed process)

P;

l. Ping-Ack Protocol

ping

ack

- p; replies
- p; queries p; once every T time units

- 1f p; does not respond within another T time units of being sent the ping,
p; detects p; as failed

If p; fails, then within T time units, p; will send
it a ping message. p,; will time out within
another T time units.

Worst case Detection time = 2T

The waiting time T can be parameterized.

Il. Heartbeating Protocol

heartbeat
p; P;

I

- p; maintains a sequence number
- p; sends p; a heartbeat with incremented
seq. number after every T time units

-1f p, has not received a new heartbeat for the
past, say 3T time units, since it received the last heartbeat,
then p; detects p; as failed

If T > round trip time of messages, then worst case detection time ~ 3T (Why?)

The 3’ can be changed to any positive number since it is a parameter

In a Synchronous System

The Ping-ack and Heartbeat failure detectors are
always correct
Ping-ack: set waiting time T to be > round-trip time
upper bound

Heartbeat: set waiting time 3T to be > round-trip time
upper bound

The following property is guaranteed:

If a process p; fails, then p; will detect its failure as long
as p, itself is alive

Its next ack/heartbeat will not be received (within the
timeout), and thus pi will detect p; as having failed

Failure Detector Properties

Completeness = every process failure is eventually
detected (no misses)

Accuracy = every detected failure corresponds to a
crashed process (no mistakes)

What is a protocol that is 100% complete?

What is a protocol that is 100% accurate?
Completeness and Accuracy

Can both be guaranteed 100% in a synchronous

distributed system
(with reliable message delivery in bounded time)

Can never be guaranteed simultaneously in an
asynchronous distributed system

Why?

Satisfying both Completeness and

Accuracy in Asynchronous Systems

Impossible because of arbitrary message delays, message
losses

If a heartbeat/ack is droned (or several are dropped) from p;,

then p, will be mistakenly detected as failed => inaccurate
detection

How large would the T waiting period in ping-ack or 3T waiting
period in heartbeating, need to be to obtain 100% accuracy?

In asynchronous systems, delay/losses on a network link are
impossible to distinguish from a faulty process

Heartbeating — satisfies completeness but not accuracy
(why?)

Ping-Ack — satisfies completeness but not accuracy (why?)

Completeness or Accuracy?

(in asynchronous system)

Most failure detector implementations are willing to

tolerate some inaccuracy, but require 100%
Completeness

Plenty of distributed apps designed assuming 100%
completeness, e.g., p2p systems

“Err on the side of caution” .

Processes not “stuck” waiting for other processes
Butit s okto mistakenly detect once in a while since

—the victim process need only rejoin as a new process
Both Hearbeating and Ping-ack provide

Probabilistic accuracy (for a process detected as failed,

with some probability close to 1.0 (but not equal), it is true
that it has actually crashed).

Failure Detection in a Distributed

System

That was for one process p; being detected
and one process pi detecting failures

Let’s extend it to an entire distributed system
Difference from original failure detection is

We want failure detection of not merely one
process (p;), but all processes in system

Centralized Heartbeating

Downside?

O

p; Heartbeat Seq. [++

Ring Heartbeating

p;
p;, Heartbeat Seq. [++ | ... P
O \

p J Og

\ L

Downside?

All-to-All Heartbeating

p;, Heartbeat Seq. l++‘/f'

G
Can?

Advantage: Everyone is able to keep track of everyone
Downside?

Efficiency of Failure Detector:

Metrics

Bandwidth: the number of messages sent in the
system during steady state (no failures)

Small is good
Detection Time

Time between a process crash and its detection

Small is good
Scalability: Given the bandwidth and the detection
properties, can you scale to a 1000 or million nodes?

Large is good
Accuracy
Large is good (lower inaccuracy is good)

Accuracy metrics

False Detection Rate: Average number of failures
detected per second, when there are in fact no failures

Fraction of failure detections that are false

Tradeoffs: If you increase the T waiting period in ping-
ack or 3T waiting period in heartbeating what
happens to:

Detection Time?

False positive rate?

Where would you set these waiting periods?

Other Types of Failures

Let’s discuss the other types of failures
Failure detectors exist for them too (but we
won't discuss those)

Processes and Channels

Process p process (q

\ Communication chanrel /

Outaoina messaae buffer Incomina messaae buffer

Other Failure Types

Communication omission failures

Send-omission: loss of messages between the
sending process and the outgoing message buffer
(both inclusive)

What might cause this?

Channel omission: loss of message in the
communication channel

What might cause this?

Receive-omission: loss of messages between the
incoming message buffer and the receiving process
(both inclusive)

What might cause this?

Other Failure Types

Arbitrary failures

Arbitrary process failure: arbitrarily omits intended
processing steps or takes unintended processing steps.

Arbitrary channel failures: messages may be corrupted,
duplicated, delivered out of order, incur extremely large
delays; or non-existent messages may be delivered.
Above two are Byzantine failures, e.g., due to hackers,
man-in-the-middle attacks, viruses, worms, etc.
A variety of Byzantine fault-tolerant protocols have
been designed in literature!

Omission and Arbitrary Failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.
Send-omission Process A process completes asend,but the message 1s not put
in its outgoing message buffer.
Receive-omissionProcess A message 1S put in a process’s incoming message
buffer, but that process does not receive it.
Arbitrary Process or Process/channel exhibits arbitrary behaviour: it may
(Byzantine) channel send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Summary

Failure detectors are required in distributed systems
to keep system running in spite of process crashes
Properties — completeness & accuracy, together
unachievable in asynchronous systems but achievable
in synchronous sytems
Most apps require 200% completeness, but can tolerate
inaccuracy
2 failure detector algorithms - Heartbeating and Ping
Distributed FD through heartbeating: Centralized,
Ring, All-to-all
Metrics: Bandwidth, Detection Time, Scale, Accuracy
Other Types of Failures

Next Week

Reading for Next Topics:
Sections 11.1-11.5

Time and Synchronization
Global States and Snapshots

